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Abstract: Deep neural networks provide remarkable performances on supervised learning tasks
with extensive collections of labeled data. However, creating such large well-annotated data sets
requires a considerable amount of resources, time and effort, especially for underwater images data
sets such as corals and marine animals. Therefore, the overreliance on labels is one of the main
obstacles for widespread applications of deep learning methods. In order to overcome this need for
large annotated dataset, this paper proposes a label-efficient deep learning framework for image
segmentation using only very sparse point-supervision. Our approach employs a latent Dirichlet
allocation (LDA) with spatial coherence on feature space to iteratively generate pseudo labels. The
method requires, as an initial condition, a Wide Residual Network (WRN) trained with sparse labels
and mutual information constraints. The proposed method is evaluated on the sparsely labeled coral
image data set collected from the Pulley Ridge region in the Gulf of Mexico. Experiments show that
our method can improve image segmentation performance against sparsely labeled samples and
achieves better results compared with other semi-supervised approaches.

Keywords: coral image segmentation; point-supervision; label-efficient; latent dirichlet allocation
(LDA); mutual information; iterative training

1. Introduction

Semantic image segmentation is the process of assigning a categorical label to each
image pixel automatically. There are many critical applications that require this procedure,
such as marine species detection and conservation, object localization, and scene under-
standing. For instance, coral detection in reef imagery is one such applications because
coral reefs are struggling due to global warming and pollution. However, the quantification
of coral abundance is currently completed by humans and it is a time-consuming, boring,
and expensive task. For example, it takes 16 people to work for several months to analyze
the abundance of corals in hundreds of images collected from one typical two-week cruise.
Hence, semantic segmentation can be used to quantify the abundance of each species by
counting the number of pixels belonging to that category. In recent years, this topic has
been widely investigated using deep learning based methods such as SegNet [1], Unet [2]
and fully convolutional network (FCN) [3]. However, such models require full pixel-level
annotation to train. Unfortunately, existing marine species and biomedical images data
sets lack annotated labels due to the cost of pixel-level labels. In our work, humans will
provide labels only for 50 pixels per image. Figure 1 shows the sparse point-level labels in
the coral images data set, where different colors represent different classes.

Semi-supervised semantic segmentation can be framed as semi-supervised image
classification with sliding window patch to identify the class of the patch’s central pixel.
Prior works on semi-supervised classification are divided into two main categories. The first
is consistency regularization which adds a regularizer into the loss function. This term
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is applied to either all images or only the unlabeled samples, and designed based on the
assumption that if a realistic perturbation was applied to the unlabeled data samples,
the network prediction should not change significantly. Π-model [4] encourages that the
distance between a network output with original input and its corresponding standard
transformation (i.e., flipping, cropping) should be small. Virtual adversarial training
(VAT) [5] approximates a tiny perturbation to the corresponding input data that would
most significantly affect network output, then they put consistency regularization into the
objective function to penalize the difference in the network outputs for the perturbed and
unperturbed samples. Methods in the second category are called pseudo labeling because
they assign pseudo-labels to the unlabeled samples based on either a network trained by
predictor or the similarity between labeled and unlabeled samples. The pseudo-labeled
examples augment the human labels in the training process with supervised loss, such as
cross entropy. Both categories use a standard loss term that is trained with supervision
from labeled samples. Our method belongs to the pseudo-labeling methodology.

Figure 1. Point-supervision : there are only 50 points pixel labels in each image, blue color represents coral, green color
represents green algae, red color represents red algae, gray color represents rock and yellow color represents other species.

There are many different ways to assign pseudo-labels on unlabeled data. The simplest
way to generate pseudo-labels is based on the distance from the true labels, as exemplified
by our previous work [6,7] to generate pseudo-label using superpixels in the input images.
Lee et al. [8] was the first, to our knowledge, to use the trained network to infer pseudo-
labels of unlabeled examples effectively by choosing the most confident class. Similarly,
entropy minimization (EntMin) [9] encourages the network to make “confident” predic-
tions for all unlabeled samples. The same principle was adopted by Shi et al. [10], where the
authors further add contrastive loss to the consistency loss in the feature space, combined
with a Mean Teacher approach [11]. Blundell et al. [12] and Kendall et al. [13] infer the
pseudo-labels using Bayesian neural network (BNN) rather than the traditional neural net-
work. Other methods for generating pseudo-labels employ a graph model, which consider
samples as nodes and find the labels of unlabeled nodes from labeled nodes. Zhu et al. [14]
proposes label prorogation and Ahmet et al. [15] applies label propagation into a deep
neural network. Carlini et al. [16] achieves the better performance by incorporating ideas
of consistency regularization, entropy minimization and Mixup operation [17]. Recently,
deep learning has been applied to coral images. Gonzalez-Rivero et al. [18] employ convo-
lutions neural networks in coral image patch classification, but without data augmentation.
Akbari Asanjan et al. [19] develop a deep learning model for extracting domain invariant
features from multimodal remote sensing imagery to create high-resolution coral images.
Modasshir et al. [20] focus on coral images video and uses forward and backward tracking
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algorithms to generate labels. Our method is different from all above methods, and our
pseudo-labels are inferred from a latent class distribution.

Our method focus on the feature space because the input space is high dimensional
which is hard to do clustering. It is obvious that a good feature representation plays a
critical role in our proposed method. To this end, we apply information maximization
criterion, which maximizes the mutual information between the input and latent features,
in the training process to obtain a good representation. In this paper, we use matrix-based
Rényi’s α-order entropy functional proposed by Giraldo et al. [21] to estimate the mutual
information and Yu et al. [22] extend it to multivariate condition. The main advantage of
this approach is that it estimates the entropy and joint entropy directly from data without
PDF estimation. This methodology is different from variational information bottleneck
(VIB) [23] and mutual information neural estimation (MINE) [24], which either approximate
the variational lower bound of mutual information or find the function to maximize the
lower bound, but their accuracy in complex imagery is unclear.

The main idea of assigning pseudo-label in our method is to find the probability of the
image patch given the class and assign the label to the image patch corresponding to the
highest probability. To obtain the latent class distribution over the image patches, we need
to fit the feature space with a statistical model. Latent Dirichlet Allocation (LDA) [25] is a
good choice, which is a three-level hierarchical Bayesian model. Each item of a collection is
modeled as the mixture of topics and each topic is modeled as mixture of the codebook.
To apply LDA for image processing, we regard the whole images as documents, categories
as topics, and small image patches as visual words. However, traditional LDA is a ”bag-
of-words” model and doesn’t consider the spatial information at all, which is essential
for image processing, therefore, we add spatial information in LDA by calculating the
frequency of the category around the image patches. Different from Wang et al [26], which
adds another layer between codebook and category, our method is simpler and easy to
train. Motivated by active learning which allowed human in the loop to annotate data at
each iteration, we also propose an iterative strategy to generate pseudo-labels. The key
idea of our strategy is to use previously learned knowledge to improve the model learning
by adding pseudo-labels inferred from previous knowledge.

In this paper, we propose a novel framework to generate pseudo-labels iteratively
depending only on the original sparsely labels. To summarize, the contributions of this
paper are as following. Firstly, we propose a simple yet effective framework to image
semantic segmentation based on the sparsely point-supervision. Secondly, we modify the
Latent Dirichlet allocation (LDA) by adding spatial coherence and use latent distribution
as the criterion to generate pseudo-labels iteratively. Finally, we add mutual information
constraint between the input and feature space to get a good representation.

The rest of this paper is organized as follows. Section 2 provides the overview of our
method and describes each part of our framework in detail. Section 3 shows the results
of the proposed method in coral images dataset compared with other semi-supervised
approaches, and ablation study for the impact of different components of our method.
Conclusion and some future works are mentioned in Section 4.

2. Materials and Methods

In this section, we first provide the overview of the proposed method and then
formulate coral image segmentation as the semi-supervised image classification problem.
Detail description for each part in Figure 2 are also demonstrated.

As we can see, our framework, summarized in Figure 2, consists of three steps. Starting
from a randomly initialized network. The first step is to train the network from labeled
samples and mutual information constrain between input and latent features. The second
step is to employ spatial coherence LDA in the embedding of the network trained in the
previous step to infer the category distribution over latent features and generate pseudo-
labels. The third step is to train the neural network on the entire training set, with labeled
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samples, pseudo-labeled samples and unlabeled samples. The pseudo-labeled samples are
weighted per samples and per class.

Step 1:
Train for T epochs with FC

 +SoftM
ax

Feature extractor

Network

Step 2:
Pseudo-labels generation
by LDA with spatial 
coherence

1111

Step 3:
Train for T’ epochs with 

Figure 2. Framework of the proposed method.

2.1. Preliminaries

In this section, we first formulate the semi-supervised coral images segmentation and
then we discuss the loss function that used in our work. For semi-supervised classification,
we assume a collection of n examples X = (x1, x2, ..., xl , xl+1, ..., xn) with xi ∈ X . The first
l examples xi for i ∈ L = {1, ..., l} denoted by XL are labeled by YL = (y1, y2, ..., yl) with
yi ∈ C, where C = {1, ..., c} is a discrete label set for c class. The remaining u = n− l
examples xi for i ∈ U = {l + 1, ..., n}, denoted by XU , are unlabeled. The goal is to use all
X (image patches) and only small label size YL (point-supervision) to train a classifier to
identify the class of unlabeled samples XU . In practical conditions, the number of samples
in label set is much smaller than that in the unlabeled set. For our coral images dataset,
there are only 0.0015% labeled pixels.

The neural network takes input examples from X and produce a vector of class
probability. We denote it by fw : X → Rc, where w represents the parameters of network.
Function fw is the mapping from the input space to the class space. The output of the
network for ith example is fw(xi) and the prediction is the index of maximum probability,
which is shown in Equation (1).

ŷi = argmax
j

fw(xi)j, (1)

where subscript j denotes the j-th dimension of probability vector corresponding to the
j-th class. Basically, we need an objective function and the goal is to minimize it, which is
nothing but to take the derivative of the loss function respect to the parameters w. There are
two stages for our method. First, we train a classifier with labels and mutual information
constraint to get a good feature representation. Then, we generate pseudo-labeled samples
via spatial LDA in the feature space extracted in the first stages and add them in the
training set.
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The objective function (L1) for the first stage consists of two component: supervised
loss(Ls) and mutual information constraint loss (LMI) shown in Equation (2). where the
minus sign is added before mutual information constraint loss because we want maximize
the mutual information.

L1(XL, YL, XU , w) = Ls(XL, YL, w)− λMILMI(XU , w), (2)

The objective function (L2) for the second stage consists of three component: su-
pervised loss (Ls), pseudo-label loss (Lp) and mutual information constraint loss (LMI),
which is shown in Equation (3), we bring in the pseudo-labeled samples information in
loss function.

L2(XL, YL, Xp, Yp, XU , w) = Ls(XL, YL, w) + λpLp(Xp, Yp, w)− λMILMI(XU , w), (3)

The network is trained by minimizing a supervised loss term (Ls) on labeled samples
in XL, which is shown in Equation (4). A standard choice of ls in classification is cross-
entropy loss. Pseudo-label loss (LP) is the second component in L2, which is applied only
to pseudo-labeled samples. Yp represents the pseudo-labels of Xp and ŷi in Equation (5)
denotes the pseudo-labels for each example xi for i ∈ U. This label is assigned according to
the latent class distribution from LDA with spatial information described in Section 2.3.

Ls(XL, YL, w) =
1
l

l

∑
i=1

ls( fw(xi), yi), (4)

Lp(Xp, Yp, w) =
1

np

np

∑
i=1

ls( fw(xi), ŷi), (5)

The third component in L2 is the mutual information between input space and latent
features space shown in Equation (6). The reason why add such term is that we want to
obtain a good representation combining not only the label information but also the input
structure information. The classifier (dotted rectangle box in Figure 1) is conceptually
divided in two parts. The first part is feature extraction network φw : X → Rd, mapping
the input to a d dimension feature vector, we denote it by vi = φw(xi) for i-th input sample
xi. The second classifier part typically consists of a fully connected layer appied on the top
of φw followed by softmax layer.

LMI(XU , w) =
1

nu

nu

∑
i=1

I(xi; φw(xi)), (6)

The classifier of choice is Wide Residual Networks (WRN) [27] which is widely
used in many semi-supervised methods for image classification. It consists of an initial
convolutional layer and three groups of residual blocks followed by average pooling and
final fully connected layer. The main difference between WRN and ResNet [28] is that the
number of kernels is larger than that of ResNet, which achieves better representation.

2.2. Feature Extraction with Information Maximization

In order to get a good feature representation for the input samples, we require that the
feature space not only contains the label information but also preserves the input sample
structure as well. Therefore, we maximize the mutual information between the input space
and feature space. The loss function is in Equation (7):

L1(XL, YL, XU , w) =
1
|Dl | ∑

xl ,yl∈Dl

H( fw(xl), yl)− λ
1
|XU | ∑

xu∈XU

I(xu; φw(xu)), (7)

The first term is the cross entropy loss between predict and true labels, the second
term is mutual information between input and its corresponding features.



J. Mar. Sci. Eng. 2021, 9, 157 6 of 19

For completeness, we review briefly bellow the matrix-based Rényi’s α-order entropy
functional on positive definite matrices and how to use it for calculating mutual information.
We first give the definition of entropy and joint entropy and then provide the equation to
calculate the mutual information.

Definition 1. Let κ : χ× χ 7→ R be a real valued positive definite kernel that is also infinitely
divisible. Given {xi}n

i=1 ∈ χ, each xi can be a real-valued scalar or vector, and the Gram matrix
K ∈ Rn×n computed as Kij = κ(xi, xj), a matrix-based analogue to Rényi’s α-entropy can be given
by the following functional:

Hα(A) =
1

1− α
log2((Aα)) =

1
1− α

log2

(
n

∑
i=1

λi(A)α

)
, (8)

where α ∈ (0, 1) ∪ (1, ∞). A is the normalized version of K, i.e., A = K/tr(K). λi(A) denotes
the i-th eigenvalue of A.

Definition 2. Given n pairs of samples {xi, yi}n
i=1, each sample contains two measurements x ∈ χ

and y ∈ γ obtained from the same realization. Given positive definite kernels κ1 : χ× χ 7→ R and
κ2 : γ× γ 7→ R, a matrix-based analogue to Rényi’s α-order joint-entropy can be defined as:

Hα(A, B) = Hα

(
A ◦ B
(A ◦ B)

)
, (9)

where Aij = κ1(xi, xj) , Bij = κ2(yi, yj) and A ◦ B denotes the Hadamard product between the
matrices A and B.

Given Equations (8) and (9), the matrix-based Rényi’s α-order mutual information
Iα(A; B) in analogy of Shannon’s mutual information is given by:

Iα(A; B) = Hα(A) + Hα(B)− Hα(A, B), (10)

Throughout this work, we use the Gaussian kernel κ(xi, xj) = exp(− ‖xi−xj‖2

2σ2 ) to obtain
the Gram matrices. For each sample, we evaluate its k (k = 10) nearest distances and take
the mean. We choose kernel width σ as the average of mean values for all samples. Further
information and the analytical gradient of Equation (10) are shown in Appendix A.

2.3. LDA with Spatial Information

In this section, we first give a briefly introduction of traditional LDA and then we
modify the LDA by adding local spatial information. LDA is one of the most popular
generative models originally developed for natural language processing, which contains a
three-level hierarchical structure. Recently, it has developed rapidly in the field of image
processing such as image segmentation, classification and annotation. When LDA is
applied to image processing, we treat the classes of objects as topics, local patches of images
as words and the whole image as a document. A codebook is created by clustering all
the local descriptors in the image set using K-means. Each local patch is quantized into a
visual word according to the codebook. The graphical model of traditional LDA is shown
in Figure 3. There are M images in the dataset. Each image m has Nm image patches. vm.n
is the observed feature value of the local image patch n in image m, zm,n denotes the hidden
class for vm,n. All the local image patches in the corpus will be clustered into K classes.
Each image m is modeled as a multinomial distribution (p(zm,n | ~θm)) with parameter
~θm over classes and similarly each category k is modeled as a multinomial distribution
(p(vm,n | ~ϕz)) with parameter ~ϕz over the visual codebook, and α, β are Dirichlet prior
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for multinormal distribution. Equation (11) shows the LDA model,~θm and ~ϕz are hidden
variables to be inferred. The generative process of LDA is shown in Algorithm 1.

P(vm,n | ~θm, ϕ) = ∑
z

p(vm,n | zm,n, ϕz)p(zm,n | ~θm), (11)

Figure 3. Graphical model of traditional LDA.

Algorithm 1 Generative process of LDA

1: Select the α and β, which are the parameters of Dirichlet distribution.
2: For a image m, a multinomial parameter θm is sampled from Dirichlet prior

θm ∼ Dirichlet(α)
3: For a category k, a multinomial parameter ϕk is sampled from Dirichlet prior

ϕk ∼ Dirichlet(β).
4: For a image patch n in image m, its category zmn is sampled from the image to category

Multinomial distribution zmn ∼ Multinomial(θm).
5: The features vmn of image patch n in image m, is sampled from the category to image

patch features Multinomial distribution of topic zmn, vmn ∼ Multinomial(ϕzmn).

Hidden category variable zm,n can be sampled through a Gibbs sampling [29] pro-
cedure which integrates out ~θm and ~ϕk. We fist randomly assign the class to each image
patch and then determine the class according to Equation (12). More details about Gibbs
sampling for LDA are shown in Appendix B.

P(zmn = k | vmn = t,~zmn,~xmn,~α,~β)

∝ P(vmn = t | zmn = k) · P(zmn = k | ~zmn, vmn,~α,~β)

=
nk

t,mn + βt

∑T
t′=1(n

k
t′ ,mn + βt′)︸ ︷︷ ︸
ϕk

t

·
nm

k,mn + αk

∑K
k′=1(n

m
k′ ,mn + αk′)︸ ︷︷ ︸
θm

k

,
(12)

where nk
t,mn is the number of visual words in the corpus with value t assigned to category

k excluding visual word n in document m, and nm
k,mn is the number of visual words in

document m assigned to category k excluding word m in document n. Equation (12) is the
product of two ratios: the probability of visual word vmn = t under category k (ϕkt ) and the
probability of category k in document m (θm

k ).
However, traditional LDA is a “bag of words” model and does not consider spatial

information at all, which is essential for image processing. Therefore, we want to add
spatial information in the original formulation based on the assumption that if visual words
are from the same class of objects, they should also be close in space. So we group image
patches which are close in space. One straightforward way is to calculate the frequency
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of the category in the neighborhood of the image patch and add it to the corresponding
conditional category distribution. Therefore we change the category distribution term
from p(zm,n | ~θm) to p(zm,n | ~θm, zm,ni ) and bring the local information, which is shown in
Equation (13). The LDA graphical model with spatial coherence is shown in Figure 4.

Figure 4. Graphical model of LDA with spatial information.

P(zmn = k | xmn = t,~zmn,~xmn,~α,~β)

∝ P(xmn = t | zmn = k) · P(zmn = k | zmni ,~zmn,~xmn)

=
nk

t,mn + βt

∑T
t′=1(n

k
t′ ,mn + βt′)︸ ︷︷ ︸
ϕk

t

·
(
(1− λ) ·

nm
k,ji + αk

∑K
k′=1(n

m
k,mn + αk′)

+ λ · 1
N

N

∑
i=1

1(zmni = k)
)

︸ ︷︷ ︸
θm

k

,
(13)

where λ is a trade-off parameter to change the weight of the local spatial information, zmni

represents the i-th image patch’s category of N neighborhoods for zmn. Recall that the
indicator function 1(zmni = k) equals 1 if and only if zmni = k. Equation (13) shows that
the category of the image patch is more likely to belong to the neighborhood’s category
than Equation (12). In this paper, we set N = 8 denoting eight connected neighbor-
hoods of the center image patch. The LDA generative process with spatial coherence is
almost the same to original LDA (Algorithm 1), except that category zmn is sampled from
P(zmn = k | zmni ,~zmn,~xmn). Algorithm 2 demonstrates inference for parameter θm and ϕk
of LDA with spatial information using Gibbs sampling.
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Algorithm 2 Gibbs sampling for LDA with spatial coherence

1: Input: image patch feature values matrix (M× H ×W), the number of categories K,
initial category of each image patch features.

2: Output: ~θm and ~ϕk.
3: for each iteration T do:
4: for each image m do:
5: for each image patch n do:
6: Sampling category of nth image patch based on Equation (13).
7: end for
8: end for
9: end for

10: Estimate the~θm and ~ϕk.

2.4. Pseudo-Label Generation

In this section, we will introduce how to generate pseudo-labels based on LDA illus-
trated in Figure 5. The three heatmaps in the middle column represent higher probability
over image patch codebooks in areas with coral, red algae and green algae, respectively
(from top to bottom) according to the category distribution (left-hand side of Figure 5).
We annotate the pseudo-labels (star point) in the sample image at right-hand side. We
calculate the distance between the pseudo-labeled samples and the original labeled samples
to determine the class for each cluster.

Pseudo-labels

Coral

Red Algae

Green Algae

Coral
Red Algae
Green Algae

Figure 5. Pseudo-labels generation.

One of the problems for generating pseudo-labels is that low-quality features extracted
by the neural network at early training stages may mislead the training process into a
wrong direction and such wrong information can spread to the following training process.
To overcome this problem, we come up with a confidence level for each pseudo-labeled
sample, which indicates how reliable the pseudo-label is. For each labeled sample xi ∈ XL,
we always set its confidence level r = 1. For each pseudo-labeled sample xp ∈ XU , we
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compute r using Equation (14), based on the assumption that xp will be more reliable if it is
located in densely populated regions.

rxp =
1
n

n

∑
i=1

1√
2πσ

exp
(
−

(φw(xp)− φw(xi))
2

2σ2

)
, (14)

where, xi is the original labeled sample and xp is the pseudo-labeled sample we generated.
We adopt kernel density estimation to estimate the probability of pseudo-labeled samples
within the label samples in the feature space. We use Gaussian kernel and for each sample,
we evaluate its k(k = 10) nearest distances and take the mean. We choose the average of
mean values for all samples as the kernel size σ. When the pseudo-labeled samples are far
away from the original labeled samples, we can get the small confidence level r.

In addition, we also introduce the class weight (ζ j of class j) to deal with the issue
of class imbalance. ζ j is defined in Equation (15), which is inversely proportional to
class population.

ζ j = (|Lj|+ |Pj|)−1, (15)

where |Lj| denotes the number of class j in labeled samples and |Pj| represents the number
of class j of generated pseudo-labels.

2.5. Iterative Training

After pseudo-label generation, we will train the neural network with labeled samples,
pseudo-label samples and unlabeled samples together using objective function shown in
Equation (16).

L2(XL, YL, XP, YP, XU , r, ζ) =
1
|Dl | ∑

xl ,yl∈Dl

ζyH( fw(xl), yl) + λp
1
|Dp| ∑

xp ,yp∈Dp

ζyp rxp H( fw(xp), yp)

− λMI
1
|DU | ∑

xu∈DU

I(xu; φw(xu)).
(16)

As can be seen, there are three terms in Equation (16). The first term is cross-entropy
between predict of labeled samples and its corresponding true labels, the second term is
cross-entropy between predict of unlabeled samples and its corresponding pseudo-labels,
and the last term is mutual information between unlabeled samples and its corresponding
features. λp and λMI are the hyper-parameters to adjust the importance of them.

Given the image patch feature extraction, pseudo-labels generation and neural net-
work training with labeled samples, pseudo-labeled samples and unlabeled samples, we
plug these components into an iterative learning process. First, we train the network for
T epochs with labeled samples and mutual information constraint using Equation (7).
Second, we obtain the class distribution over feature visual words via spatial LDA. Third,
we assign pseudo-labels to unlabeled image patches by selecting higher probability in class
distribution. Finally, we train the network on the entire dataset using Equation (16) for T

′

epochs. We repeat this iterative process for M iterations. The above steps are summarized
in Algorithm 3.
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Algorithm 3 GeneratePseudo-labels iteratively via spatial LDA

1: w← initialize randomly
2: for epoch ∈ [1, ..., T] do
3: w← Optimize(L1(XL, YL, XU , w)) Equation (7) . mini-batch optimization
4: for Iteration ∈ [1, ..., M] do
5: for i ∈ [1, ..., n] do vi ← φw(xi) . feature descriptors
6: Vw ← K-means(vi) . visual feature codebook
7: Pc ← Gibbs sampling(Vw) Equation (13) . probability of class given unlabeled samples
8: for c ∈ [1, ..., C] do yc

p ← argmaxcPc|xp
. pseudo-labels

9: for xp ∈ [1, ..., Xp] do rxp ← Equation (14) . confidence level
10: for j ∈ C do ζ j ← (|Lj|+ |Pj|)−1 . class weight
11: for epoch ∈ [1, ..., T] do
12: w← Optimize(L2(XL, YL, XP, YP, XU , r, ζ)) Equation (15) . mini-batch optimization
13: end for
14: end for

3. Results

In this section, we first describe coral image data set used in our experiments and
semi-supervised image segmentation setup. Then, we discuss the training details for our
method. Finally, we perform the experiments to compare with other semi-supervised
image classification approaches and show the impact of different components involved in
the our proposed method.

3.1. Dataset

For the coral image data set, which is collected from Pulley Ridge region in the Gulf
of Mexico. There are 120 images with only 50 labeled pixels for each image, the size of
each image is 2048× 1536. For each human label, we select 30× 30 pixel patch centered at
the label. We use 100 images for training and 20 images for testing. The number of image
patches for training is 5000. We select 4000 image patches samples for training and 1000 for
validation. There are five classes: corals, rock, green algaes, red algaes and others.

3.2. Experiments Setup and Training Details

Experiments on coral image dataset are performed with Wide Residual Networks
(WRN). Specifically, we used “WRN-28-2”, i.e., ResNet with 28 convolutional layers and
the number of kernels is twice as that of ResNet, including average pooling, batch normal-
ization and leaky ReLU nonlinearities. For training, the size of input image patch is 30× 30
and we chose the Adam optimizer [30], with 0.001 learning rate and 64 batch size for
labeled samples, 128 batch size for unlabeled samples. We set the λMI = 0.1, and linearly
ramp up λp to its maximum value (we set it as 10 in our experiment) over the 500 epochs
during the training. We employ the mean intersection over union criterion (mIOU) [31] to
quantify our proposed method.

We first train the network for 100 epochs with only sparse point-level labels and
mutual information constraint between input and the output of the last layer before the
softmax. Then, we use K-means to construct the visual codebook in the feature space.
The codebook size is 200 and the dimension of feature visual word is 128. The way to assign
the pseudo-labels for unlabeled image patches is as follows: we first find the 10 highest
probability features for each class based on the class over feature visual word distribution
obtained by spatial LDA and assign such features as that class label. Then we go back
to whole image to search the image patches and give them the same pseudo-labels as its
corresponding features. Finally, we train the neural network with labeled samples, pseudo-
labeled samples and unlabeled samples together for 500 epochs. We repeat the above steps
5 to 10 times and generate about 5000 pseudo-labeled samples for each iteration.
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3.3. Parameter Analysis and Performance Comparison

We first show the performance with different codebook size which is essential for our
experiments. It is obvious that the small codebook cannot represent all image patches,
while a large codebook size will improve the computational complexity in inferring the
parameters of LDA. So, we select an appropriate codebook size according to the image
segmentation results shown in Figure 6. As can be seen, when the codebook size is larger
than 200, the performance starts decreasing slowly. Therefore, we set codebook size as
200 in our experiments.

100 200 300 400 500
Codebook size

0.55

0.60

0.65

0.70

0.75

m
Io

u

Figure 6. Performance with different codebook size.

Then, we compare our method with other semi-supervised methods in Table 1. As we
can see, pseudo-labeling methods are more accurate than supervised approach (use sparse
labels only). Entropy minimization, virtual adversarial training (VAT) and Π-model work
better than pseudo-labeling. Our proposed method performs better than other competing
methods and when combined with VAT, we can achieve the best performance against
others. The way we combine VAT is to add another adversarial consistency loss term
(mean square error between original sample and its corresponding adversarial example) in
Equation (4) at stage 2 training. Figure 7 shows the results of coral images segmentation
for different methods. As can be seen, our proposed method can detect coral well and the
areas are more smooth than other approaches.

Table 2 shows the abundance of coral, green algae and red algae detected by different
methods on the coral images test dataset. Our proposed method performs much better
than others especially for coral and red algae detection.

Table 1. Performance on coral images dataset with different semi-supervised model.

Method mIOU

Supervised 60.8%
EntMin 69.3%
Π-model 68.5%
Pseudo-labeling 61.7%
VAT 74.7%

Ours 74.8%
Ours + VAT 75.1%
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Image Sample Π-model

VAT Ours

Entropy minimizationPseudo-labeling

Ours + VAT

Image Sample Pseudo-labeling

VAT Ours Ours + VAT

Π-modelEntropy minimizationGround Truth

Ground Truth

Figure 7. Coral image segmentation on test dataset with different methods. Blue color represents coral, green color
represents green algae, red color represents red algae, gray color represents rock and yellow color represents other species.

Table 2. Coral, green algae and red algae abundance detected with different method
on test dataset.

Method Coral Green Algae Red Algae

Ground Truth 15.7% 43.6% 20.4%
Supervised 10.2% 40.2% 22.5%
EntMin 11.6% 42.5% 22.3%
Π-model 12.5% 41.8% 25.3%
Pseudo-labeling 10.8% 42.6% 22.9%
VAT 20.6% 43.3% 17.5%

Ours 17.0% 43.8% 21.5%
Ours + VAT 16.8% 43.1% 21.8%

3.4. Ablation Study

We investigate the impact of different component of our proposed approach. First,
we show the benefit of using weighting strategy (confidence level ri for samples and class
weights ζ j for different classes) for generated pseudo-labeled samples. Green and orange
curves in Figure 8 shows that our weight strategy has positive contribution.
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Figure 8. Performance on coral images test dataset with different component of proposed method.

Then, we study the effectiveness of including spatial coherence in LDA. Figure 9a
shows the value of log-likelihood during the Gibbs sampling process for LDA with or
without spatial coherence. λ denotes the weight to adjust the importance of spatial infor-
mation. As can be seen, when adding spatial information, the performance improves (the
higher log-likelihood the better), and we can achieve the best performance when λ = 0.01
corresponding green curve in Figure 9. Similarly, we also plot the log-likelihood for LDA
with or without mutual information constraint in Figure 9b, which shows that the features
extracted with MI constraints are better than without MI constraints.
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Figure 9. (a) log-likelihood for LDA with or without spatial coherence; (b) log-likelihood for LDA with or without
MI regularization.

Table 3 and Figure 8 demonstrate that weighting strategy, spatial coherence and
MI constraints in our proposed method have positive contributions for coral images
segmentation. Spatial coherence in LDA considers the local patch information, and bring
weights for pseudo-labeled samples can reduce the bad effect of labeling errors. MI
constraints introduced in the loss function achieve the better representation for feature
extraction.

4. Conclusions

In this paper, we propose a novel and effective framework to generate pseudo-labels
iteratively only depending on sparsely labels. The results in the coral image data set from
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Table 3. Ablation study results on coral images test dataset.

Method mIOU

LDA 63.8%
LDA + spatial 69.3%
LDA + spatial + weights 73.5%
LDA + spatial + weights + MI 74.8%

Pulley Ridge show that our approach can generate more correct pseudo-labels and help us
get a better result for image segmentation against other semi-supervised method. The main
advantage of generating pseudo-label iteratively is that previously learned knowledge can
be incorporated to improve the model learning and final results. However, the limitation of
our method is that for the under represented classes, i.e., classes that have a low percentage
of the overall pixels, our method does not work well. Nevertheless, our method is a
productive way to tell human experts what kind of classes should be more annotated,
and which classes already have sufficient labels to yield good identification results.

Future works may follow four directions: First, we think that metric learning may
quantify the uncertainty of the pseudo-labels by including distance in the input space,
latent feature space and label space. Second, we want to improve the information theoretic
methods to obtain more useful information besides the label information. Third, we want
to change the current architecture for image patch classification to a fully convolutional
network. One of the obvious weakness of the current architecture is that the network can
only see the small size image patches but cannot obtain the whole image structure. Last but
not least, we want to develop a graphical user interface (GUI) software to allow humans in
the loop interaction to guide the annotation of more useful labels.
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Appendix A. Mutual Information and the Gradient of Matrix-Based
Entropy Functional

I(x; y) =
∫ ∫

P(x, y) log
(

P(x, y)
P(x)P(y)

)
dxdy

= −
∫ (∫

P(x, y)dy
)

logP(x)dx−
∫ (∫

P(x, y)dx
)

logP(y)dy

+
∫ ∫

P(x, y) logP(x, y)dxdy

= −
∫

P(x) logP(x)dx−
∫

P(y) logP(y)dy +
∫ ∫

P(x, y) logP(x, y)dxdy

= H(x) + H(y)− H(x, y),

(A1)

where H(·) denote the entropy and H(·, ·) denotes the joint entropy.
It is not hard to verify that our measure has analytical gradient. In fact, we have:

∂Sα(A)

∂A
=

α

(1− α)

Aα−1

tr(Aα)
, (A2)

∂Sα(A, B)
∂A

=
α

(1− α)

[
(A ◦ B)α−1 ◦ B

tr(A ◦ B)α
− I ◦ B

tr(A ◦ B)

]
(A3)

and
∂Iα(A; B)

∂A
=

∂Sα(A)

∂A
+

∂Sα(A, B)
∂A

(A4)

Since Iα(A; B) is symmetric, the same applies for ∂Iα(A;B)
∂B with exchanged roles be-

tween A and B.

Appendix B. Gibbs Sampling for the LDA Topic Model

There are two processes of LDA: one is~α→ ~θ → zm,n, the other is~β→ ~ϕk → xm | k = zm.
Hidden variable z follows multinomial distribution which is shown in Equation (A5) and we
show the equations of the first process as follows.

P(~z | ~θ) =
K

∏
i=1

θ
ni
i (A5)

Dirichlet(~θ |~α) = Γ(α1 + α2 + · · ·+ αk)

Γ(α1) + Γ(α2) + · · ·+ Γ(αk)

K

∏
i=1

θ
αi−1
i

=
1

∆(~α)

K

∏
i=1

θ
αi−1
i

(A6)

Because the Dirichlet distribution is the conjugate prior of the multinomial distribu-
tion, so the form of the distribution for ~θ given ~z has the same form as Dirichlet distri-
bution, which is shown in Equations (A6) and (A7). We select the expectation value of
the posterior as the value of the variable ~θ which is shown in Equation (A8). In order
to get the joint distribution, we also calculate the conditional distribution of x and z in
Equations (A9) and (A10).

P(~θ | ~z)) ∼ Dirichlet(~θ | (~α +~n)) (A7)

~θ = (
n1 + α1

∑K
i=1(ni + αi)

,
n2 + α2

∑K
i=1(ni + αi)

, · · · ,
nK + αK

∑K
i=1(ni + αi)

) (A8)
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P(~z |~α) =
∫

P(~z | ~θ)P(~θ |~α)d~θ

=
∫ K

∏
i=1

θ
ni
i Dirichlet(~θ |~α)d~θ

=
∫ K

∏
i=1

θ
ni
i

1
∆(~α)

K

∏
i=1

θ
αi−1
i d~θ

=
1

∆(~α)

∫ K

∏
i=1

θ
ni+αi−1
i d~θ

=
∆(~α +~n)

∆(~α)

(A9)

Similarly, we can get the distribution of ~x given by~z and ~β.

P(~x | ~z,~β) =
K

∏
i=1

∆(~βi + ~ni)

∆(~βi)
(A10)

Therefore, we can get the joint distribution for the image patch feature ~x and its
category~z, which is shown as follows.

P(~x,~z |~α,~β) = P(~z |~α)P(~x | ~z,~β)

=
∆(~α +~n)

∆(~α)

K

∏
i=1

∆(~βi + ~ni)

∆(~βi)

(A11)

We use the Gibbs sampling algorithm, which is one of the Markov chain Monte Carlo
(MCMC) methods to estimate the parameters of the LDA model.

P(zi = k | ~zi,~x) = P(zi = k | xi = t,~zi,~xi)

=
P(zi = k, xi = t | ~zi,~xi)

P(xi = t | ~zi,~zi)

(A12)

P(~θ | ~zi,~xi) = Dirichlet(~θ |~α +~ni) (A13)

P(~ϕk | ~zk,i,~xk,i) = Dirichlet(~ϕk | ~βk +~nk,i) (A14)

Finally, we can get the Gibbs sampling equation by combining Equations (A11)–(A13),
which is shown as follows:

P(zi = k | ~zi,~x) ∝ P(zi = k, xi = t | ~zi,~xi)

=
∫

P(zi = k, xi = t,~θ, ~ϕk | ~zi,~xi)d~θd~ϕk

=
∫

P(zi = k,~θ | ~zi,~xi)d~θ
∫

P(xi = t, ~ϕk | ~zk,i,~xk,i)d~ϕk

=
∫
~θkDir(~θ |~α +~ni)d~θ

∫
~ϕk,tDir(~ϕk | ~βk +~nk,i)d~θ

= E(θk)E(ϕk,t)

= θ̂k ϕ̂k,t

(A15)

In addition, we can estimate θ̂k and ϕ̂k,t through the following equations.

θ̂k =
nj

k,ji + αk

∑K
k′=1(n

j
k,ji + αk′)

(A16)
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ϕ̂k,t =
nk

t,ji + βt

∑T
t′=1(n

k
t′ ,ji + βt′)

(A17)

P(zji = k | xji = t,~zji,~xji,~α,~β) ∝

=
nj

k,ji + αk

∑K
k′=1(n

j
k,ji + αk′)

·
nk

t,ji + βt

∑T
t′=1(n

k
t′ ,ji + βt′)

(A18)
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